PS-SDK API

PS Software
Development Kit.

Programming Reference

p. 1/54

1. Table of Contents

L. T ABLE OF CONT ENT S .. ettt ettt e e et e et e e e e s e et eeeeeeesse et e eeeeesssseassaeeeseeesseaarbaeeeeessssanes 2
2. INTRODUGCTION ...ttt ettt e ettt et e e et e e e e e e e ettt e e e e e ettt eeeeseea e eeteeesseeetarereeessseaeraeeees 3
2.1. 2N Lo] =] X 4
2.2. SYSTEM REQUIREMENTS ...iiiitittttiteeeeettttasttseesseestssasseesssessssaassesssesssaaasseesseessssan s eesssesstbanseessseessransseeesees 4
2.3. SUPPORTED CAMERAS ...utieiittttttteeeesettttsttsseesseestaa s seeesset s s sseesse et bbb seessses s b b s eeesesasbbaaseeesseessbaansseearees 4
2.4. SDK DIRECTORY STRUCTURE ...ttuutiietittttttisseessestsssasseesssessssssssesssssssssasseessssssssanseeessrsstssseessessrinnsreeesee 4
2.5. PREPARATION TO DEVELOP PROGRAMS USING THE SDK ... ittt e e 5
2.6. REDISTRIBUTION OF THE PS SDK COMPONENTS ON THE CLIENT S PC .ovviiiiiiiiii et 5
2.6.1 USB AEIVET INSTAIATION.ciiiiiiiiiiiiiieeeeeeee ettt ettt e et ettt e e e e e et assasaaaeasessssnsssssnnnnes 5
A O T 1o = W] -] o U= oo PSR TR 6

3. OVERVIEW ..ottt e ettt e e e e et e e e e — et e e e e e — e e e e e e a e ————aaaan 6
3.1. PROTOCOL FOR REMOTE CONNECTIONcutttutiteetittttiiiseeessesttaissseessssssssssseeessssssaseeessesstssseessssssrinsseeesees 6
3.2 SYSTEM ARCHITECTURE ...iiiiiitittiteeeeettttatieseessetstbasseeessesssaaa s seesse st bbbt sesssees s s b s eeessessbbaasseesssesssraansseeesees 6
3.3. RS B (0] =] (o3 =TT 8
3.4. g T0 1= = | =TT 8
3.5. /=1 N 5T 9
3.6. CONTROLLING ACAMERA USING THE SDK ... ciiiiiiiie ittt e e st e s e e s s et et s e e e e s e eaabbsseeeeees 10
3.6.1 SDK Initialization and tEIMINALIONevveeeeieeeeeeieieeeeeeeeeesaeeseessseesasassssesesssasssesssssssssssssssssssssssssssssssnnnns 10
KT A Votor - o o= =T - VS 10
KT B 1Y o] ¢ QT o (=17 T TR 10
KN S I (] T o] o (o TR 11
3.6.5 Transferring of CaptUred PhOTOSooiiiiiii e 11
3.6.6 OpLiCal ZOOM OPEIALIONS. ... ccviiiiiiiiieeie ettt ettt et et e nbe et e be e 11
3.6.7 WOIK WIth PrOPEITIES. ... eeeiiie et e et e st e e sn e e e e e e te e e sneeesneeennteeeneeenres 12
TS T Vo [0 [0 g F= (T LU =T 12
3.7. R B] N = Y XS] T 7 = T 12
3.8. [R B] (G ==y = § 13
I N e T = = A L 13
4.1. YA o B 7 [T 13
O =Y 11 (= 14515] L 13
O = Y = 41 L (TS L 14
O T o T (= T4 1T 1Y =T g =T T SRR 14
4.1.4 PSCameralnitializationErrorSUDSCIIDEcoioiiiiiiiiiiiic ettt e e s ab b e e e e e e e s s eanes 15
4.1.5 PSCameralnitializationErrorCallDaCK.ccoiiiuriiiiiiiiiiiiiieee e e e e e e e e e eanes 15
4.1.6 PSCameralListChangedSUDSCIIDEcoiiiiiiie et sae e sae e 16
4.1.7 PSCameraListChangedCallDack.............cccviiiiiiiii et sae e sae e 16
R T = T 17
e I =T €= { OF=T 1 (=] =1 I £ SO 17
4.1.10 10 1= R TT] o] o E O SR 18
4111 PSCaAMEIAEITOISUDSCIIDE .. .vvviiiiiiei i e e r e e e e s s sb e e e e e e e 18
4112 PSCamMEraErrOrCallDAaCK.cviiiiiiiiiiiiiiie e e e e s s ra e e e e e e 19
4.1.13 e T (O 11 [<T = | 2] { TP 19
41.14 PSGetCamEraCONNECLIONSIALE.ccvvviiiii i ettt e et e e s e e e e e s s s ebb b b e e e e e e e s s sbbbaaeeeeeeeas 19
4.1.15 RS o (e (1T - L (<Y 20
4.1.16 e e eV =LY = T 20
4,117 PSNEWPIeVIEWFIramMESUDSCIIDE ..o e r e e e e s s s bbb be e e e e e e 21
4.1.18 PSGENEIICEVENTCAIIDACK.uvviiiiiiiiiitiiie et e e r e e e e e s s s b bba e e e e e e 21
4.1.19 e T eV L= = T4 1[I 22
4.1.20 PSUPAAIEAEAR ... oottt b et sb e s st s e e st e st e st e e be et nbe b 22
4121 e Lo Y,V A LU 1 40T 1 1 23
4.1.22 L] C =] 720 o] 23
4.1.23 PSZ00MChaNGEASUDSCIINE .. .c.viiiieiie et 23
S R =S 1= 170 0] R 24
4.1.1 PSZoomCOMPIEtEdSUDSCIIDE.cciiiiieiietee ettt st este et esraesree s 24
O = 1S 1T 1o | AT 25
4.1.3 PSShootCOMPIEtEASUDSCIIDE. ccviiiieiieiie ettt sttt et esraesree s 25

4.1.4 PSShootCompletedCallDACKcooiiiiiiieiie et 26
A.15 PSGEIFIIELIST......ccutiiiieie ettt bbbt b e bbb bbb e nr e nre b nre e 26
416 PSDOWNIOAARTIEccuiiiiiiieeeeee et b e sb e b bt sb e sb e st e b e e sbeenbeenreenre e 27
417 PSDOWNIOAAFTIETO .. ettt bbbt b bbb e bt e b e nb e sbe e b e e sbeesbeenbeenre e 27
4.1.8 PSDownloadCompletedSUDSCIIDE.ciiiiiiiiieiie et 28
419 PSDownloadCompletedCallDack..........ccviiiiiiiiie e 28
4.1.10 PSDRIBLEFTIE ... bbb 29
I R (T o] 0T 1] I 1 O PRSPPI 29
O R e 1=l o 0] 01T 1] L= o PR 30
O R e CT=] | o (0] 01T g1 B - L= PP ORI 30
O R o= 0] o =] Y] B T | - RO PR 31
411 PSGEIPIOPEITYNEITIE ...ttt ettt et e ettt e e st e e e e sb bt e e e abbe e e s anbb e e e e snbbeeesanbaeeesnreeens 31
411 PSGEPIOPEIrtYVAINGIME.coiiiiietieiee ittt b bbbt e b e sb e b e e sbeenbeesbeesbeenree s 31
4.1.1 PSPropertyListChangedSUDSCIIDEcoiiiiiii e 32
4.1.1 PSPropertyChangeaSUDSCIIDE.cciuiiiiiiiieitie ettt bbb bbbt sree s 32
411 PSPropertyChangedCallbackcoooiiiiiiiiiii e 33
4.2. ERRORS ...ttt ekttt E ekt E R R e Rt Rt e e nE e 33
4.3. PROPERTIEStttieetittite e ettt e ettt e e ettt e e ettt e e sttt e e e ekt e e e ek bt e e e e st bt e e e oab b e e e e a ke e e e ek ke e e e aabb e e e e anbee e e s anbeeeeanbbeeeennrees 34
e 0t R o (0] 1= g AV =] = V1 PO RTSTRPPRI 34
e R o o] o L1 1= (o[- IS 2 PO 34
4.3.1 PSProp_JpegQUAIITYc.eeeiiiiiiie ettt ettt e et e e ntaeennaeennreean 34
e 0 R o o £ o S @ 1S o T T PO RURPPRI 35
4.3.1 PSProp_ShOOtINGMOUEcoouiiiiiiieiieiie ettt b e bt bbb bt e nbe et e e sbeenbeesbeesbee s 35
0 R o o £ T = 11T o[- PO RTSURPPRI 36
O T R o o 0] oI YA ORI 36
O T R o o 0] o JE IV RSP 36
4.31 PSPrOp_REIEYEMOUEccviitieiietietee ettt bbbt bbbt sb bbb e e sbeesbeesbeenree s 37
4.3.1 PSProp_EXPOSUMBCOMP ...ociiiiiiiiiiieeitit ettt ettt ekt e et e ekt nar e e st e nb s e e snneennreean 38
e 0t R = o o R =TS (oo o OSSR 38
4.3.1 PSProp_MEeriNGMOOE.ccouiiiiieiieitie ittt b bbbt sb e sb e sbe et e e sbeesbeesbeenree s 38
4.3.1 PSPrOP_FOCUSINGZONE.....c.uiitiiiietieitee ittt ettt b bbbt b e sb e sb e b e e b e e sbe e st e e sbeenbeesbeenbeens 39
0 R = o o T =TS 1Y o o [OSSR 39
4.3.1 PSProp BatterYLEVEloceieiiiie ettt nnpe e are e 39
4.4. DATATYPES USED BY THE APIS ..o 39
4.4.1 PSProp ValEXteNdedINfO........ccviiiiieii it 40
O e e 0] & T =T o SR 40
441 PSCAMEIAINTO ..oviiiiiiicieee e s 40
B.4.2 PSFIBINTO. ...c.viiiiiiiiee e 40
443 PSCamMeraCoNNECHIONSTALE.iieeieierrisieeie ettt nr e nr e nr e nnenns 40
441 PSPIEVIBWSTALEcueiiiiieitisieei ettt et r et R n R R n e r e s 40
A4.L PSBOOL.....ciiiiiieeee Rt r e ns 41
5. CODE SAMPLES.ottt 41

2. Introduction

PS-SDK is a Software Development Kit for developers, which is intended for controlling Canon*
PowerShot* cameras from a PC.

Using PS-SDK allows developers to implement following features in software:
To manage a list of cameras connected to the PC;

To establish connection with a camera and to close it;

To manage camera settings and image shooting properties;

To receive live-view image from camera viewfinder;

To take photos;

To download image files from the camera.

! Canon and PowerShot are registered trademarks of the Canon Inc.

p. 3/54

2.1. Basic topics

PS-SDK provides a C language interface for accessing digital cameras and data created by these
cameras. PS-SDK is designed to provide standard methods of accessing different camera models
and their data.

Modern Canon digital cameras do not provides capabilities for controlling cameras from the PC. By
default only access to camera’s flash-card is possible.

To enable camera control features it is required to run additional software on the camera which
should handle controlling commands and perform corresponding actions directly in the camera.
This task is performed by PS module component of the PS-SDK. When started, it switches the
camera to PC-controlled mode and the camera becomes ready to process commands from the PC.
After finishing of the PS module, the camera returns to standard work mode.

2.2. System requirements

OS: Windows XP (Home / Professional), Vista, 7
OS Architecture: 32/64 bit

RAM: 1Gb

Hard disk space: 50 megabytes

Camera connection interface: USB 2.0
SD/SDHC Flash memory card for each camera
SD/SDHC Card Reader

2.3. Supported cameras

Canon PowerShot SX160 IS, revision 100A

Canon PowerShot A4000 IS, revisions 101A/100C
Canon PowerShot A810, revisions 100B/100D/100E
Canon PowerShot SX40 HS, revisions 100G/100l
Canon PowerShot A2200, revision 100D

Canon PowerShot SX150 IS, revision 100A

Canon PowerShot A800, revisions 100B/100C
Canon PowerShot A800, revision 100B

Canon PowerShot SX130 IS, revisions 101C /101D/101F
10 Canon PowerShot A495, revisions 100E/100F

©ooN R WNRE

2.4. SDK Directory structure
PS-SDK distribution contains following directories structure:

e Doc — SDK documentation;
e PSSDK C SDK files:
o inc header files directory contains pssdk.h and psproperty.h files;
o lib pssdk.lib file
o redist PSSDK.dII file for redistributing SDK with client applications
e PSSDK.NET .NET SDK file PSSDK-NET.dII;
e Samples source code sample directories:
o VC# 2010 Sample C# samples for Visual Studio 2012,
o VC++2010 Sample C samples;
e Samples bin compiled binary examples of SDK using

p. 4/ 54

o VC# 2010 Sample bin binary samples written in C#;
o VC++2010 Sample bin binary samples written in C;
e Tools SDK auxiliary tools:
o CardSetup — CardSetup utility for installation PS module on SD cards;
o PSDriver PSDriver installation utility.

2.5. Preparation to develop programs using the SDK

To use the PS-SDK using following header files are required:
pssdk.h , psproperty.h

Be sure to copy the two header files listed above into the header access folder of the development
environment. Be sure to add them to the application project workspace.
After header files are included, it is necessary to link the PS-SDK library.

There are two methods of linking PS-SDK: one where PSSDK.lib files are copied to the folder
specified by a development environment library path and PSSDK.lib is specified as an import
module, and another where PSSDK.dIl is loaded by the LoadLibrary function.

When loading PSSDK.dII, get pointers to each PS-SDK function using the GetProcAddress
function and assign them to function pointer variables. When calling each PS-SDK function, make
the call via the function pointer variable obtained here.

2.6. Redistribution of the PS SDK components on the client’s PC

Before PS-SDK could be used, following steps should be performed:

1. Camera preparation: To enable camera-control feature, PS module should be written on
camera’s flash-card. This task is performed by card preparation utility CardSetup.exe, for each
controlled camera;

2. Driver installation to the PC. Installation is performed only once, by running corresponding
executable file;

3. Specified dll file should be placed into the system;

Installation files:
e CardSetup.exe
e PSdriverinstall.exe
e PSSDK 32.DLL
e PSSDK 64.DLL

2.6.1 USB driver installation

WinUSB is a universal driver for USB devices in the Windows system. The driver provides direct
interaction with a device. WinUSB is supported by all current versions of the Windows system,
beginning from the Windows XP. To automate driver installation procedure, utility included in the
SDK, could be used. The utility builds driver and installs it to the system.

It is recommended to keep camera switched off while the driver is being installed. Switched on
camera in itself is not an obstacle for driver installation, but driver couldn’t be installed if Windows
drivers installation wizard is opened. If camera in PC-controllable mode was connected to the PC
before driver installation, the system would open Windows drivers installation wizard and to install
driver, the wizard should be closed first.

p. 5/ 54

Driver should be installed only once per system. Driver’s installation does not affect camera’s
functioning in standard mode (when camera works without installed PS module).
Distributions of programs based on PS-SDK should include driver’s installation archive.

2.6.2 Camera preparation

To response on PS-SDK commands, camera should run compatible PS-module. For each camera
model and either for each camera firmware version (a camera could be produced with different
firmware versions) suits different PS-modules. PS-module is installed to a flash-memory card
compatible with the camera;

To install PS-module to a camera following steps should be performed:
1. PS-module version compatible with the camera selected,
2. PS-module, specific directories and marks structure are written to camera-compatible card;
3. The card is switched to the “lock” mode and is inserted to the camera. The “lock” mode
indicates camera that the card contains additional module which should be run upon the
camera start.

Switching camera memory card to “lock”state

There is a CardSetup.exe utility provided with the SDK. The utility simplifies installation of the
PS-module. The utility recognizes exact camera model and its firmware version by photo-image
made by the camera. Then, it prepares the card and writes corresponding PS-module version to it.
After that all that remains is to switch the card to “lock” mode and to insert the card to the camera.

When the camera, with the card in “lock” mode inserted, is switched on, PS-module would start and
switch the camera to PC-controllable mode and the camera would become ready to perform
commands received from a PC.

To return the camera to conventional work mode it takes you only to pull the card out of the camera
or to switch the card to “unlock” mode. Consequent insertion of the card to the camera, or switching
the card to “lock” would switch the camera to the PC-controllable mode again.

There are several possible ways of PS-module distribution along with solutions based on PS-SDK.
E.g., you can prepare and deliver cards compatible with user cameras, if you have access to ones.
Or, you might as well distribute utility itself to your users, in other case.

3. Overview

3.1. Protocol for Remote Connection

Commands are transferred from PC to a camera via camera USB connection using PTP protocol.
PTP is an abbreviation of “Picture Transfer Protocol”

3.2. System architecture

Communication with a camera in the Windows system is provided by WinUSB driver. The driver
creates separate device entries for camera in pc-controlled mode and for the same camera in

p. 6/54

standard mode, therefore, from the system’s point of view, the camera in pc-controlled mode and
the camera in standard mode are two independent devices.
To provide full-scale communication with a camera specific PTP protocol extension is added to it

via PS module installation (see p. 2.6.2))
Such feature prevents any possible conflicts with software which use the camera in standard mode

(when camera works without installed PS module).

Your Application

PS-SDK API
PS-SDK
Library PTP encoder/decoder
Modules

WinUSB transport

Windows Kernel Mode WinUSB Driver

PTP task

Digital PS Module
Camera

Camera control functions

PS-SDK architecture

Typical interaction with the camera consists of following steps:
1. The SDK provides communication with WinUSB driver, generates PTP-command and
sends it to the camera;
2. PS-module in the camera receives command, executes it and, if necessary, send data back to
the PC;
3. The SDK receives data and decodes it.
Additionally, the SDK monitors camera’s internal events and reports them to client-side software

p. 7/ 54

3.3. PS-SDK objects

SDK

CameraManager

~ Cameral.ist

Session

FileList

FileInfo

PropertyList

PropertyDesc

PS-SDK objects structure

PS-SDK employs a hierarchical structure with a CameraManager object at the root in order to
control and access cameras connected to the host PC. This hierarchical structure consists of the
following elements:

e CameraManager — an enumeration of all compatible cameras connected to the system via
USB interface.

Cameralnfo — structure which describes given camera

Session — camera controlling object

FileList — collection with descriptions of files captured during the current session;

FileInfo — structure which describes given captured file

Prop_Desc — structure which describes given property. Description includes possible values
and various auxiliary information;

3.4. Properties

Properties are stored under PS-SDK for camera and image objects. For example, properties may
represent values such as camera Av and Tv. The functions PSGetPropertyData and
PSSetPropertyData are used to get and set these properties. Since this API takes objects of
undefined type as arguments, the properties that can be retrieved or set differ depending on the
given object. In addition, each property has a list of currently settable values. PSGetPropertyL.ist
is used to get this list of settable values. PSGetPropertyDesc returns description of the given

property.

For details on types of properties, the objects they are associated with, and the role they play,
see p. 4.3.

Following properties are represented in the SDK:

Property name Description

PS ShootingMode shooting mode (read-only)
PS_ImageSize image size

PS JpegQuality image quality

PS MeteringMode metering mode

p. 8/54

PS WBmode white balance mode

PS FlashMode flash mode
PS_RedEyeMode red-eye mode
PS_1SOSpeed ISO

PS Av Aperture

PS Tv shutter speed

PS_ExposureComp exposure compensation

PS_FlashComp flash compensation

PS AFMode autofocus mode

PS_BatteryLevel battery level (read-only)

PS_FocusingZone focusing zone

3.5. Events

Asynchronous events is a mechanism used to issue notifications from the SDK to the application
regarding cameras connected to the host PC or state changes that have occurred for a camera. For
example, if a state change occurs where a camera’s shooting mode changes and a new image that
needs to be transferred to the PC has been shot, a notification of that fact is sent to the application
regardless of its state (asynchronously).

An event handler capable of the specific processing required for a particular event must be
registered in order to receive such an event (notification). An event handler is a user function called
when an event is received. Event handlers are also referred to as “callback functions.” Users can
allow events to be accepted by creating and registering callback functions that accept events issued
by PS-SDK.

When an event occurs, the PS-SDK executes the callback function registered by the user. In
dependence of event type, callback function could receive different auxiliary information about
event. All callback functions receive so-called context information defined during event
subscription

The user must release event handlers as they become unneeded using PSFree command.

Event types provided by PS-SDK represented in the table below. Table columns contain event
names, short descriptions and event subscription function names. Subscription and callback
functions described in details in corresponding sections of API reference (see p. 4)

Event name

Short description

Subscription function

PSCameralnitializationError

Event is activated when
procedure of establishing
connection session with a
camera by means of
PSOpenSession function is
failed by some reasons

PSCameralnitializationError
Subscribe

PSCameraL.istChanged

Event is activated when new
compatible camera connected
to the PC or previously
connected camera is
disconnected from the PC

PSCameraL.istChanged
Subscribe

PSNewPreviewFrame

Event is activated when
preview image is ready to be
downloaded from the
connected camera

PSNewPreviewFrame
Subscribe

PSZoomChanged

Event is activated when a user
changes zoom state of the
camera

PSZoomChangedSubscribe

p. 9/54

PSZoomCompleted

Event is activated when Zoom
changing action, started by
PSSetZoom command, is
successfully finished

PSZoomCompleted
Subscribe

PSShootCompleted

Event is activated when photo
shooting process, started by
PSShoot command, is
completed

PSShootCompletedSubscribe

PSDownloadCompleted

Event is activated when image
file downloading process,
started by PSDownload or
PSDownloadTo command, is
completed

PSDownloadCompleted
Subscribe

PSPropertyListChanged Event is activated when a PSPropertyListChanged
property becomes available or | Subscribe
unavailable due to changing of
other property value or
switching camera to different
mode
PSPropertyChanged Event is activated when value | PSPropertyChanged
of one of the properties is Subscribe

changed.

3.6. Controlling a camera using the SDK

3.6.1

SDK Initialization and termination

PSInitializeSDK initializes SDK, PSTerminateSDK finishes its work and releases all allocated

resources

3.6.2

Accessing camera

To access a camera following commands should be performed:

=

PSGetCameraManager command which initializes camera manager;

2. PSGetCameraList command returns collection of all compatible cameras connected to the

PC;

3. To open camera connection session, call PSOpenSession command for camera item in
cameras collection. With each camera only one connection could be established at one
moment. It is possible to establish several simultaneous sessions with different cameras;

When work is finished, PSFree command should be called for all PSSessionHandle and
PSCameraManagerHandle objects.

PSCameraL.istChangedSubscribe command makes subscription for camera list change event. The
event’s callback function receives PSCameraConnectionState value which describes change type:
connection of new camera or disconnection of previously connected camera.

PSGetCameraConnectionState command checks whether camera connected to the PC in the
session or not, using session’s PSSessionHandle. Such feature permits you to easily process
camera list connections events and to check connection status for camera with opened session

(current camera).

3.6.3

Work with preview

The SDK permits programmer to receive image from camera’s viewfinder. To enable receiving of
preview frames to the PC call PSSetPreviewState command with PS_ PREVIEW_ENABLED

p. 10/ 54

value as argument. Note that the camera always creates preview when it is in shooting mode.
PSSetPreviewState only controls transferring the preview to the PC.

Important! Enabling of receiving preview images to the PC significantly increases
system’s load.

The SDK receives preview as frequent as it possible. When another image is received,
NewPreviewFrame event is activated. After receiving the event, image file could be read by
PSGetPreviewFrame function and shown on the screen.

Preview size is defined by the camera parameters. Preview image size is at least 320x 240, and
could be greater in new camera models. Preview images are received in BMP format.

To stop preview capturing mode, call PSSetPreviewState command with
PS_PREVIEW_DISABLED value as argument. Attempt of reading current frame after stopping
preview handling, raises an error.

3.6.4 Taking photos

To start a process of taking photo, call PSShoot. The process consists of following steps:

1) Camera flash is charged, if necessary. Charging process could take some time, so it may lead
to pause before shooting

2) Auto-focus and auto-exposure are performed;

3) Photo is exposured

4) Shutter operates

5) Captured data is processed in the camera

6) Image file is written to the flash-card.

When shooting process is over, PSShootCompletedCallback event is received. After shooting
finishing, image file still in the camera card and is not sent to the PC yet. When photo-shooting
routines are being processed, all other commands to the camera are blocked and preview is not
available.

3.6.5 Transferring of captured photos

PSShootCompleted event receives PSFileinfo structure which contains information of photo
taken, including identifier for its downloading.

All photos taken during current connection session are gathered in PSGetFileL.ist.collection. To
download photo-image file, call PSDownloadFile for necessary file. File would be downloaded to
temporary folder and your application would receive full path to the file. PSDownloadFileTo
command save file to the path defined by parameters.

PSDownloadCompletedCallback event is activated when download is completed. One of the
event arguments — absolute path to the downloaded file.

When photo is already downloaded to the PC, this file on the memory card should be removed by
PSDeleteFile command, file would be deleted from the card physically and its restoration wouldn’t
be possible. Image files should be removed from the card to free some place on it.

3.6.6 Optical zoom operations

Camera’s optical zoom is controlled by PSSetZoom command. The command receives current
zoom value which could be in range from 0 to maximum zoom value, stored in
PSGetMaximumZoom variable.

When zoom value is being set by the camera, all other commands are blocked, except command
related with the preview mode. When zoom is finally set, ZoomChanged event is activated.
PSGetZoom command returns current zoom value.

Zoom changing is also possible directly from the camera. When zoom is being changed from the
camera, its value changes are immediately reported by the ZoomChanged event.

p. 11/54

3.6.7 Work with properties

Camera parameters management is performed by its properties. PSGetPropertyL.ist function
returns list of all properties accessible at the moment (depends from camera model and its work
mode) Description for given property could be received by PSGetPropertyDesc command.
Description contains list of available values for property (depends from camera work mode and
values of other properties) and property’s type (read-only or read-write).

PSGetPropertyData returns current value of the property.
PSSetPropertyData command defines new values for read-write properties.

When list of available properties, or list of available values for any property, is changed,
PropertyListChanged event is activated. On property’s value changing,
PSPropertyChangedCallback is activated. Property’s value could change when other property’s
value is changed, camera is switched to different mode, battery’s level decreased or increased, and
S0 on.

Readable name of property is returned by PSGetPropertyName function
Readable name of property’s value is returned by PSGetPropertyValName function.

3.6.8 Additional features

All objects created during using the SDK require to free memory after work with them is finished.
For this task PsFree command is used.

After PSCameraErrorCallback event activation for a session, any actions with the session would
raise a error.

If camera initialization ends with error, PSCameralnitializationErrorCallback event is activated
for CameraManager object. There are number of possible error reasons: low battery charge,
unsupported camera mode etc.

If camera’s battery is nearly empty and camera couldn’t work adequately,
PSCameraErrorCallback event is activated with PS_LOW_BATTERY_LEVEL argument.

It is recommended to supply controlled cameras with constant power sources.
PSProp_BatteryLevel property, which shows current charge level, also indicates supply from
constant power source by its | value PS_BatteryLevel DC.

All SDK operations are being logged. Log stores all information on SDK work and performed
commands. By default, log-file is being written to Windows temporary folded, YYYYY command

defines arbitrary path to log-file.
On SDK initialization, previous log is rewritten by a new one.

3.7. PS-SDK Basic types

This section introduces the basic data types used under the PSSDK. These data types are defined
as C language types.

typedefint Camerald;
typedefint Fileld;

p. 12/ 54

3.8. PS-SDK Errors

Most of the APIs supplied by PS-SDK return an error code of type PSResult as their return value.

The return value of an API that terminates normally is PS_OK. If an error occurs, the return
value of the API in question is set to the error code indicating the root cause of the error and any
passed parameters are stored as undefined values. (Note that an API used to control files is not
limited to returning an error related to file control.)

For error codes, see the list given in the header file PSSDK.h or see PS Errors list in p. 4.2

4. APl Reference

4.1. API Details

API specifications are explained in the following format.

Description:
Indicates the main API function
Syntax:
PSResult PSXXXXX(XXX inXXXX, XXX *outXXX) ;
Indicates the syntax for calling the API function.
Parameters:

Explains each argument in the syntax individually.

In the syntax, argument names in the format inXXX represent arguments

for which you enter values. Argument names in the format outXXX represent
arguments with values set by the libraries (that is, passed by reference). Before
calling APIs, you must prepare variables for storing the data to be retrieved.

Return Values:
Explains API return values

See Also:
Indicates information related to the API.

Note:
Considerations when using the API.

Example:
Sample code.

411 PSinitializeSDK

Description:
Initialization of the SDK. Should be called before using SDK functions.
Before initialization PS-SDK functions behavior is not defined.

Syntax:
PSResult PSSDKAPI PSinitializeSDK()

Parameters:
None

Return Values:
Returns PS_OK if successful, for other values see PS errors list, p. 4.2

p. 13/54

See Also:

Note:

Example:

Description:

Syntax:

Parameters:

Return Values:

See Also:

Note:

Example:

Description:

Syntax:

Parameters:

Return Values:

See Also:

Note:

Example:

PSTerminateSDK

There is only one instance of the SDK could run in the system at the moment. If
SDK instance is already started, initialization would return specific error.

See code example inp. 5.1

4.1.2 PSTerminateSDK

Closes SDK and releases all resources allocated by the libraries

void PSSDKAPI PSTerminateSDK()

None

Returns PS_OK if successful, for other values see PS errors list, p. 4.2

PSInitializeSDK

See code example in p. 5.2

4.1.3 PSGetCameraManager

Returns CameraManager object. The object responses for interaction with
cameras and for exchanging messages with them. The object provides list of
connected cameras and their properties and opens camera control sessions.

To release memory from CameraManager instance, use PSFree command on
CameraManagerHandle

CameraManagerHandle PSSDKAPI PSGetCameraManager()

None

CameraManager object or, if error occurs, nullptr.

PSGetCameraL.ist, PSOpenSession, PSCloseSession, PSFree

See code example inp. 5.1

p. 14/ 54

Description:

Syntax:

Parameters:

Return Values

See Also:

Note:

Example:

Description:

Syntax:

Parameters:

Return Values

See Also:

4.1.4 PSCameralnitializationErrorSubscribe

Registers callback function for camera initialization error event.

Event is activated for errors which occur during the process of camera
initialization, between the moment when camera is connected to the PC and a
moment when PSCameraListChanged event is activated. Errors which occur
with initialized camera activate PSCameraError event.

PSSubscriberHandle PSSDKAPI
PSCameralnitializationErrorSubscribe(PSCameraManagerHandle
inCamMgr, PSCameralnitializationErrorCallback inCallback,
void* inContext)

inCamMgr — current CameraManagerHandle object

inCallback — callback function to register. See
PSCameralnitializationErrorCallback function description below.
inContext — designate application information to be passed by means of the
callback function. Any data needed for your application can be passed.

Subscription handler or, if error occurs, nullptr

PSFree, PSCameralnitializationErrorCallback,
PSCameraListChangedSubscribe, PSCameraErrorSubscribe

To unsubscribe from the event, call PSFree command for subscription handler.

415 PSCameralnitializationErrorCallback

Callback function for PSCameralnitializationError event. Function should be
defined in client application and given to PSCameralnitializationError
Subscribe function as an argument.

PSCameralnitializationErrorCallback(void* context, int code, wchar_t*
camSystemld)

context — user data given to the SDK in PSCameralnitializationErrorSubscribe
call

code — error code of PSResult type;

camSystemld — camera system identifier which initialization raised the error. This
handler should be released by PSFree command

None

PSCameraListChangedSubscribe, PSFree

p. 15/ 54

Note:

Example:

Description:

Syntax:

Parameters:

Return Values

See Also:

Note:

Example:

4.1.6 PSCameralListChangedSubscribe

Registers callback function for camera list changing event. Events contains
information on their type (connection or disconnection a camera from the list)

SubscriberHandle PSCameraListChangedSubscribe(CameraManagerHandle,
CameraListChangedCallback, void* inContext);

CameraManagerHandle - current CameraManager object
CameraL.istChangedCallback callback function to register. See its description
below.

inContext — designate application information to be passed by means of the
callback function. Any data needed for your application can be passed.

Subscription handler or, if error occurs, nullptr
PSFree, CameraListChangedCallback

Usual scenario of processing the events consists of re-reading camera list and
checking whether the camera still connected to the PC or not. More complicated
processing scenarios are also possible.

To unsubscribe from the event, call PSFree command for subscription handler

4.1.7 PSCameralListChangedCallback

Description:

Callback function for PSCameraListChanged event. Function should be defined
in client application and given to PSCameraListChangedSubscribe function as
an argument.

Syntax:

PSCameraL.istChangedCallback(void* context, PSCameralnfo* devinfo, int
connectionState)

Parameters:

context — user data given to the SDK in PSCameraListChangedSubscribe call
devinfo — information about camera issued change in the camera list;
connectionState — camera connection state (see PSCameraConnectionState, p.
4.4.5)

Return Values:

None

See Also:

PSCameraListChangedSubscribe

p. 16/ 54

Note:

Example:

4.1.8 PSFree

Description:

Removes object by given link from the memory. Could receive any object of PS-
SDK

Syntax:

void PSSDKAPI
PSFree(void*)

Parameters:

PS-SDK object to release memory from

Return Values:

None

See Also:
Note:

The command would also works correctly if argument’s value is nullptr.

Example:

See code example inp. 5.2

419 PSGetCameralList

Description:

Syntax:

Parameters:

Return Values:

See Also:

Note:

Example:

Returns list of compatible cameras connected to the computer. Camera list is a
collection of structure of Cameralnfo type.

void PSSDKAPI
PSGetCameraList(PSCameraManagerHandle inCamMgr, PSCameralnfo**
outCameralList, int* outListSize)

inCamMgr — current CameraManager object

outCameralList — list of PSCameralnfo items with descriptions of connected
cameras. Memory should be released from the list after its using by PSFree
command

outL.istSize — number of items in outCameraL.ist list

PSGetCameraManager

Camera list getting process is logged, so SDK log contains full list of cameras
found in the system, including incompatible ones.
If there are no cameras connected to the PC at the moment, outCameralL.ist is Null

See code example in p. 5.3

p. 17/ 54

4.1.10 PSOpenSession

Description:
Opens session of camera remote control by Camerald from camera description

Syntax:
PSResult PSSDKAPI
PSOpenSession(CameraManagerHandle inCamMgr, Camerald inCamld,
SessionHandle* outSession);

Parameters:
inCamMgr — current CameraManager instance
inCamld — unique id of the camera, of type Camerald

Return Values:
Returns PS_OK if successful, for other values see PS errors list, p. 33
outSession — Session handler object which is used for sending messages to the
camera

See Also:
PSGetCameraManager, PSCloseSession, PSFree, PSGetCamerald

Note:
When session is opened, files list FileList is initialized. All files from camera’s
flash-card are removed and FileList after initialization is always empty..
To close session, call PSFree for session handler

Example:
See code example inp. 5.3

41.11 PSCameraErrorSubscribe

Description:
Registers callback function for camera error event.
Event is activated for errors which occur during work with the camera with opened
session. Errors which occur during camera initialization process activate
PSCameralnitializationError event.

Syntax:

PSSubscriberHandle PSSDKAPI
PSCameraErrorSubscribe (SessionHandle inSession,
PSCameraErrorCallback inCallback,
void* inContext)

Parameters:

inSession — current session opened for the camera

inCallback — callback function to register. See

PSCameraErrorCallback function description below.

inContext — designate application information to be passed by means of the
callback function. Any data needed for your application can be passed.

Return Values
Subscription handler or, if error occurs, nullptr

See Also:
PSFree, PSCameraErrorCallback, PSCameralnitializationErrorSubscribe

Note:
To unsubscribe from the event, call PSFree command for subscription handler.

p. 18/ 54

Example:

Description:

Syntax:

Parameters:

Return Values

See Also:

Note:

Example:

Description

4.1.12 PSCameraErrorCallback

Callback function for PSCameraError event. Function should be defined in client

application and given to PSCameraErrorSubscribe function as an argument.

PSCameraErrorCallback(void* context, int code, wchar_t* camSystemId)

context — user data given to the SDK in PSCameralnitializationErrorSubscribe

call

code — error code of PSResult type;

camSystemld — system identifier of the camera which raised the error. This
handler should be released by PSFree command

None

PSCameraErrorSubscribe, PSFree

41.13 PSGetCameralnfo

Returns camera’s info by its open session handler

Syntax:

PSResult PSSDKAPI
PSGetCameralnfo(PSSessionHandle inSession, PSCameralnfo* outlnfo);

Parameters:

inSession — handler of the session in which the camera is connected;

Return Values:

PSResult error code
outlnfo — camera information

See Also:

Note:

Example:

4.1.14 PSGetCameraConnectionState

Description:

Checks if the camera still connected in the session.

Syntax:

PSResult PSSDKAPI
PSGetCameraConnectionState(PSSessionHandle inSession, int*

p. 19/ 54

Parameters:

Return Values:

See Also:

Note:

Example:

Description:

Syntax:

Parameters:

Return Values:

See Also:

Note:

Example:

Description:

Syntax:

Parameters:

outCameraConnectionState);

inSession — handler of the session through which the camera is connected

PSResult error code
outCameraConnectionState — PSCameraConnectionState value
(PS_CS_CONNECTED or PS_CS_DISCONNECTED)

PSOpenSession

The command checks whether the session was closed after disconnection of the
camera and after receiving corresponding event. If the camera is disconnected from
the session without closing it, the session should be closed manually.

Check is necessary due to possibility of physical disconnection of a camera without
closing its session.

4.1.15 PSSetPreviewState

Controls receiving of preview images from the camera

PSResult PSSDKAPI
PSSetPreviewState(PSSessionHandle inSession, int inState);

inSession — handler of the session through which the camera is connected;
inState — required preview state of PSPreviewState type
(PS_PREVIEW_ENABLED or PS_PREVIEW_DISABLED)

PSResult error code

PSGetPreviewState

Receiving preview images from a camera costs additional PC CPU consumption.

See code example inp. 5.4

4.1.16 PSGetPreviewState

Returns current status of receiving preview images from the camera

PSResult PSSDKAPI
PSGetPreviewState(PSSessionHandle inSession, int* outState);

p. 20/ 54

inSession — handler of the session through which the camera is connected;

Return Values:
PSResult error code
outState — preview state of PSPreviewState type
(PS_PREVIEW_ENABLED or PS PREVIEW_DISABLED)

See Also:
PSSetPreviewState.

Note: .

Example:

4.1.17 PSNewPreviewFrameSubscribe

Description:
Registers callback function for event of creating new preview image.

Syntax:
PSSubscriberHandle PSSDKAPI
PSNewPreviewFrameSubscribe(PSSessionHandle inSession,
PSGenericEventCallback inCallback, void* inContext);

Parameters:
inSession — handler of the session through which the camera is connected
inCallback — callback function to register. See PSGenericEventCallback
description for details
inContext — designate application information to be passed by means of the
callback function. Any data needed for your application can be passed.

Return Values:
Subscription handler or, If error occurred, nullptr

See Also:
PSGenericEventCallback

Note:
To unsubscribe from event, PSFree command should be called for resulting
subscription handler.

Example:
See code example inp. 5.4

4.1.18 PSGenericEventCallback

Description:
Callback function for generic events which doesn’t receive additional arguments.
Function should be defined in client application and given to event subscription
function as an argument.

Syntax:
PSGenericEventCallback(void* context);

Parameters:
context — user data given to the SDK in event subscription command

p. 21/54

Return Values:

See Also:

Note:

Example:

Description:

Syntax:

Parameters:

Return Values:

See Also:
Note:

Example:

Description:

Syntax:

Parameters:

Return Values:

See Also:

None

PSNewPreviewFrameSubscribe

See code example inp. 5.5

4.1.19 PSGetPreviewFrame

Receives preview frame from the camera

PSResult PSSDKAPI
PSGetPreviewFrame(PSSessionHandle inSession, void** outBMPData, int*
outDataSize);

inSession — handler of the session through which the camera is connected

PSResult error code;

outBMPData — preview image data in BMP-file format
(BITMAPFILEHEADER, BITMAPINFOHEADER, array of pixels). To release
memory from array PSFree command should be used;

outDataSize — size of outBMPData in bytes

Important! Before next image could be received by means of
PSGetPreviewFrame command, memory should be released from previous
preview frame by applying PSFree command on outBMPData array

See code example in p. 5.6

4.1.20 PSUpdateAEAF

Refresh autoexposition and autofocus states of the camera

PSResult PSSDKAPI
PSUpdateAEAF(PSSessionHandle inSession);

inSession — handler of the session through which the camera is connected;

PSResult error code

p. 22/ 54

Note:

Example:
See code example inp. 5.3

4.1.21 PSGetMaximumZoom

Description:
Returns maximum optical zoom value available for a camera.
Syntax:
PSResult PSSDKAPI
PSGetMaximumZoom(PSSessionHandle inSession, int* outMaxZoom);
Parameters:

inSession — handler of the session through which the camera is connected;

Return Values:
PSResult error code
outMaxZoom — maximum available zoom value

See Also:
PSGetZoom, PSSetZoom

Note:

Example:
See code example inp. 5.7

4.1.22 PSGetZoom

Description:
Returns current optical zoom value

Syntax:
PSResult PSSDKAPI
PSGetZoom(PSSessionHandle inSession, int* outZoom);

Parameters:
inSession — handler of the session through which the camera is connected;

Return Values:
PSResult error code
outZoom — current zoom value

See Also:
PSGetZoomMaximumValue, PSSetZoom

Note:

Example:
See code example in p. 5.7

4.1.23 PSZoomChangedSubscribe

Description:
Registers callback function for event of changing current zoom value

Syntax:

p. 23/ 54

Parameters:

Return Values:

See Also:

Note:

Example:

Description:

Syntax:

Parameters:

Return Values:

See Also:

Note:

Example:

Description:

Syntax:

PSSubscriberHandle PSSDKAPI
PSZoomChangedSubscribe(PSSessionHandle inSession,
PSGenericEventCallback inCallback, void* inContext);

inSession — handler of the session through which the camera is connected
inCallback — callback function to register of PSGenericEventCallback type
inContext — designate application information to be passed by means of the
callback function. Any data needed for your application can be passed.

Subscription handler or, if error occurs, nullptr
PSFree, PSGenericEventCallback
To unsubscribe from event, PSFree command should be called for resulting

subscription handler.

4.1.24 PSSetZoom

Sets zoom value

PSResult PSSDKAPI
PSSetZoom(PSSessionHandle inSession, int inZoom);

inSession — handler of the session through which the camera is connected
inZoom — new zoom value

PSResult error code

PSGetZoomMaximumValue, PSGetZoom

The function sends to the camera command to change zoom value and finishes
immediately. When zoom action is completed, ZoomCompleted event is activated.
To subscribe on the event PSZoomCompletedSubscribe function is used.

See code example in p. 5.8

4.1.25 PSZoomCompletedSubscribe

Registers callback function for event of completing zoom changing action in the
camera

PSSubscriberHandle PSSDKAPI
PSZoomCompletedSubscribe(PSSessionHandle inSession,

p. 24/ 54

PSGenericEventCallback inCallback, void* inContext);

Parameters:

inSession — handler of the session through which the camera is connected
inCallback — callback function to register of PSGenericEventCallback type
inContext — designate application information to be passed by means of the
callback function. Any data needed for your application can be passed.

Return Values:

Subscription handler or, if error occurs, nullptr

See Also:

PSFree, PSGenericEventCallback

Note:

To unsubscribe from event, PSFree command should be called for resulting
subscription handler.

Example:

See code example inp. 5.3

4.1.26 PSShoot

Description:

Takes a photo

Syntax:

PSResult PSSDKAPI
PSShoot(PSSessionHandle inSession)

Parameters:

inSession — handler of the session through which the camera is connected

Return Values:

PSResult error code

See Also:

Note:

Example:

Description:

Syntax:

Parameters:

See code example inp. 5.9

4.1.27 PSShootCompletedSubscribe

Registers callback function for event of finishing taking photo

PSSubscriberHandle PSSDKAPI
PSShootCompletedSubscribe(PSSessionHandle inSession,
PSShootCompletedCallback inCallback, void* inContext);

inSession — handler of the session through which the camera is connected
inCallback — callback function to register

inContext — designate application information to be passed by means of the
callback function. Any data needed for your application can be passed.

p. 25/ 54

Return Values

See Also:

Note:

Example:

Description:

Syntax:

Parameters:

Return Values

See Also:

Note:

Example:

Description:

Syntax:

Parameters:

Return Values

Subscription handler or, if error occurs, nullptr

PSFree

To unsubscribe from event, PSFree command should be called for resulting
subscription handler.

See code example inp. 5.3

4.1.28 PSShootCompletedCallback

Callback function for PSShootCompleted event. Function should be defined in
client application and given to PSShootCompletedSubscribe function as an
argument.

PSShootCompletedCallback (void* context, PSFileInfo* resFileld)

context — user data given to the SDK in PSShootCompletedSubscribe call
resFileld — information about taken image file. This handler should be released
afterwards with PSFree function

None

PSShootCompletedSubscribe, PSFree

See code example in p. 5.10

4.1.29 PSGetFileList

Returns list of image files taken during current session

PSResult PSSDKAPI
PSGetFileList(PSSessionHandle inSession, PSFilelnfo** outL.ist, int*
outL.istSize);

inSession — handler of the session through which the camera is connected

PSResult error code

outL.ist — list of PSFilelnfo items for all taken image files. The memory should be
released from the list by PSFree command

p. 26/ 54

outListSize — number of items in the list

See Also:
Note:
If there are no taken images in the camera, outL.ist is Null
Example:
4.1.30 PSDownloadFile
Description:

Download image file from the memory card

Syntax:
PSResult PSSDKAPI
PSDownloadFile(PSSessionHandle inSession, PSFileld inFileld, int
inRemoveFile);

Parameters:
inSession — handler of the session through which the camera is connected
inFileld — id of transferring file in filelist
inRemoveFile — if true, the file is automatically removed from camera memory
after transferring the file to the PC, otherwise image file should be removed
manually afterwards with PSDeleteFile command.

Return Values
PSResult error code

See Also:

Note:
The function sends download command to the camera and finishes immediately.
When file download is completed then DownloadCompleted event is activated.
PSDownloadCompletedSubscribe function creates subscription on the event.
Full path to downloaded file is sent as resPath argument to the event callback
function of PSDownloadCompletedCallback type.

Example:

41.31 PSDownloadFileTo

Description:
Downloads image file to given path

Syntax:
PSResult PSSDKAPI
PSDownloadFileTo(PSSessionHandle inSession, PSFileld inFileld, wchar_t*
inFilePath, int inRemoveFile);

Parameters:
inSession — handler of the session through which the camera is connected
inFileld — id of transferring file in filelist
inFilePath — path for saving transferred file
inRemoveFile — if true, the file is automatically removed from camera memory
after transferring the file to the PC, otherwise image file should be removed
manually afterwards with PSDeleteFile command.

p. 27/ 54

Return Values
PSResult error code

See Also:
PSGetFileList, PSDownloadFile, PSDeleteFile

Note:
The function sends download command to the camera and finishes immediately.
When file download is completed then DownloadCompleted event is activated.
PSDownloadCompletedSubscribe function creates subscription on the event.
Full path to downloaded file is sent as resPath argument to the event callback
function of PSDownloadCompletedCallback type.

Example:
See code example in p. 5.10

4.1.32 PSDownloadCompletedSubscribe

Description:
Registers callback function for event of file download completing

Syntax:
PSSubscriberHandle PSSDKAPI
PSDownloadCompletedSubscribe(PSSessionHandle inSession,
PSDownloadCompletedCallback inCallback, void* inContext);

Parameters:
inSession — handler of the session through which the camera is connected
inCallback — callback function to register
inContext — designate application information to be passed by means of the
callback function. Any data needed for your application can be passed.

Return Values
Subscription handler or, if error occurs, nullptr

See Also:
PSFree, PSGetFileList, PSDownloadFile, PSDownloadFileTo PSDeleteFile
Note:
To unsubscribe from event, PSFree command should be called for subscription
handler.
Callback function should call PSFree command for resPath parameter
Example:
See code example in p. 5.3
4.1.33 PSDownloadCompletedCallback
Description:
Callback function for PSDownloadCompleted event. Function should be defined
in client application and given to PSDownloadCompletedSubscribe function as
an argument.
Syntax:
PSDownloadCompletedCallback (void* context, PSFileld fileld, wchar_t*
resPath)
Parameters:

p. 28/ 54

Return Values

See Also:

Note:

Example:

Description:

Syntax:

Parameters:

Return Values

See Also:

Note:

Example:

Description:

Syntax:

Parameters:

Return Values

See Also:
Note:

context — user data given to the SDK in PSDownloadCompletedSubscribe call
resFileld — downloaded file identifier

resPath — full path to the downloaded file. This handler should be released
afterwards with PSFree function

PSDownloadCompletedSubscribe, PSFree

See code example in p. 5.11

4.1.34 PSDeleteFile

Deletes given file from the camera memory card

PSResult PSSDKAPI
PSDeleteFile(PSSessionHandle inSession, PSFileld inFileld)

inSession — handler of the session through which the camera is connected
inFileld — id of transferring file in filelist

PSResult error code

PSFree, PSGetFileList, PSDownloadFile, PSDownloadFileTo PSDeleteFile

4.1.35 PSGetPropertyList

Returns list of all properties available at the moment

PSResult PSSDKAPI
PSGetPropertyList(PSSessionHandle inSession, int** outL.ist, int* listLen);

inSession — handler of the session through which the camera is connected

PSResult error code
outL.ist — list of available properties
listLen — length of outL.ist list

Notice that list contains only currently available properties. It could change in

p. 29/ 54

Example:

Description:

Syntax:

Parameters:

Return Values

See Also:
Note:

Example:

Description:

Syntax:

Parameters:

Return Values

See Also:
Note:

Example:

dependence of properties values and camera mode

See code example in p. 5.12

4.1.36 PSGetPropertyDesc

Returns description of given property

PSResult PSSDKAPI
PSGetPropertyDesc(PSSessionHandle inSession, int inProp, PSProp_Desc**
outDesc);

inSession — handler of the session through which the camera is connected
inProp — property id

PSResult error code
outDesc — property description of the PSProp_Desc type. This handler should be
released by PSFree function

Notice that resulting PSProp_Desc structure availableValues list contains only
values available at the moment. The list could change in dependence of other
properties values and from camera mode.

See code example in p. 5.13

4.1.37 PSGetPropertyData

Returns value of given property

PSResult PSSDKAPI
PSGetPropertyData(PSSessionHandle inSession, int inProp, int* outRes);

inSession — handler of the session through which the camera is connected
inProp — property id

PSResult error code
outRes — current property value

p. 30/ 54

Description:

Syntax:

Parameters:

Return Values

See Also:
Note:

Example:

Description:

Syntax:

Parameters:

Return Values

See Also:
Note:

Example:

Description:

Syntax:

Parameters:

4.1.38 PSetPropertyData

Sets value for given property

PSResult PSSDKAPI
PSSetPropertyData(PSSessionHandle inSession, int inProp, int inVal);

inSession — handler of the session through which the camera is connected
inProp — property id.
inVal — new property value

PSResult error code

See code example in p. 5.13
4.1.39 PSGetPropertyName

Returns readable name for given property

PSResult PSSDKAPI
PSGetPropertyName(int inProp, char** outName);

inProp — property id

PSResult error code
outName — property name. Handler’s release is not necessary.

4.1.40 PSGetPropertyValName

Returns readable name for given value of given property

PSResult PSSDKAPI
PSGetPropertyValName(int inProp, int inPropVal, char** outName);

inProp - property id
inPropVal — property value id

p. 31/54

Return Values

See Also:
Note:

Example:

Description:

Syntax:

Parameters:

Return Values

See Also:
Note:

Example:

Description:

Syntax:

Parameters:

Return Values

See Also:
Note:

PSResult error code
outName — property value name. Handler’s release is not necessary.

See code example in p. 5.13

4.1.41 PSPropertyListChangedSubscribe

Registers callback function for event of properties list change

PSSubscriberHandle PSSDKAPI
PSPropertyListChangedSubscribe(PSSessionHandle inSession,
PSGenericEventCallback inCallback, void* inContext);

inSession — handler of the session through which the camera is connected
inCallback — callback function to register of PSGenericEventCallback type
inContext — designate application information to be passed by means of the
callback function. Any data needed for your application can be passed.

Subscription handler or, if error occurs, nullptr

PSFree, PSGenericEventCallback

To unsubscribe from event, PSFree command should be called for resulting
subscription handler.

4.1.42 PSPropertyChangedSubscribe

Registers callback function for event of property change

PSSubscriberHandle PSSDKAPI
PSPropertyChangedSubscribe(PSSessionHandle inSession,
PSPropertyChangedCallback inCallback, void* inContext);

inSession — handler of the session through which the camera is connected
inCallback — callback function to register of PSPropertyChangedCallback type
inContext — designate application information to be passed by means of the
callback function. Any data needed for your application can be passed.

Subscription handler or, if error occurs, nullptr

PSFree, PSPropertyChangedCallback

p. 32/ 54

To unsubscribe from event, PSFree command should be called for resulting

subscription handler.

Example:

4.1.43
Description:

PSPropertyChangedCallback

Callback function for PSPropertyChanged event. Function should be defined in
client application and given to PSPropertyChangedSubscribe function as an

argument.

Syntax:

PSPropertyChangedCallback(void* context, int prop);

Parameters:

context — user data given to the SDK in PSPropertyChangedSubscribe call
prop — identifier of changed property

Return Values

See Also:

PSPropertyChangedSubscribe, PSFree

Note:

Example:

4.2. Errors

As return values, PS-SDK APIs return error codes defined as follows.
For each API, the return values mainly used are identified based on API characteristics. However,
the principal factors that actually caused the problems are specified as error codes. Thus, all error

codes may be specified in return values.

Returned value

Description

PS_OK

Function finished successfully

PS_FAILED,

Function failed due to unspecified reason

PS_SESSION_ALREADY_OPENED,

Attempt to open new connection session with
the camera has finished unsuccessfully because
there is already a session established with the
camera

PS_CAMERA_NOT_FOUND

Attempt to send a command to the camera (or
establish connection with the camera) was
unsuccessful because camera wasn’t found

PS_RESULT_NOT_READY

Command hasn’t returned processing result
because it is not ready yet

PS_UNSUPPORTED_CAMERA_MODE

Attempt to switch the camera in certain
operation mode has been failed, because such
mode is not supported by the camera

PS_UNSUPPORTED_PROPERTY

Attempt to get or set certain camera property has
been failed, because such property is not
available for the camera

PS_UNSUPPORTED_PROPERTY_VALUE

Attempt to set certain value for the property has
been failed because the value is not supported by
the property.

p. 33/ 54

| PS LOW BATTERY LEVEL | Battery level too low

4.3. Properties

Properties of camera and images objects can be retrieved and set by means of
PSGetPropertyData, PSSetPropertyData, and other APIs.

For certain properties, if the target object is a camera, you can use the PSGetPropertyDesc API
to get the properties that can currently be set. For details, see the description of
PSGetPropertyDesc.

If the target object is an image, it has properties besides current settings values—specifically,
properties that store settings values at the time the image was shot. Current property settings values
are usually indicated, assuming you do not particularly need the previous values.

For the various properties there are, this section explains the objects they describe and what the
properties mean.

43.1 Property Details
Properties are explained in the following format:

4.4.xx PropertylD — property id

Description: Explains the role of the property and how to work with it

Value: Indicates possible values for the property.
Values are expressed as decimals unless otherwise noted..

Note: Considerations when using the API.

43.1 SProp_ImageSize

Description:
Indicates image size selected in the camera. Actual resolution of each size depends
on camera model.

Value:
Value Description
PS ImageSize Large Large
PS_ImageSize_Medium_1 Medium1l
PS ImageSize Medium 2 Medium2
PS_ImageSize_Medium_3 Medium3
PS_ImageSize Small Small

Note:

For image size property additional information available on image width and height

4.3.1 PSProp_JpegQuality

Description:
Quiality of jpeg photo-files taken by the camera

Value:
| Value | Description

p. 34/54

PS_JpegQuality Superfine Superfine

PS_JpegQuality Fine Fine
PS_JpegQuality Normal Normal
Note:
43.1 PSProp_ISOSpeed
Description:
Current 1SO speed of the camera. Number of available 1SO speeds dependent on
the camera.
Value:
Value Description
PS_ISOSpeed Auto (0) Auto
PS_1SOSpeed_1SO_80 (80) ISO 80
PS_1SOSpeed 1SO_100 (100) ISO 100
PS_1SOSpeed _1SO_200 (200) ISO 200
PS_1SOSpeed_1SO_400 (400) 1SO 400
PS_1SOSpeed 1SO_800 (800) ISO 800
PS_1SOSpeed_1SO_1600 (1600) ISO 1600
Note:
Values in brackets represent actual integer values.
When Auto I1SO is defined, camera determines itself which I1SO speed it should use
in each case, in correspondence with current light conditions, shutter speed and so
on.
4.3.1 PSProp_ShootingMode
Description:
Indicates camera shooting mode
Value:
Value Description
PS_ShootingMode_Auto Fully automatic mode when camera
decides values of all shooting
parameters
PS_ShootingMode_Program Program mode. Camera automatically
sets aperture value and shutter speed,
but flash-mode and 1SO-speed value
are taken from corresponding
properties
PS_ShootingMode_Manual Fully manual mode.
PS_ShootingMode_ AV Aperture priority mode. Shutter speed
is set automatically in dependence on
aperture value
PS_ShootingMode TV Shutter priority mode. Aperture value
is set automatically on dependence on
defined shutter speed value
Note:

p. 35/54

4.3.1 PSProp_WBmode

Description:
Indicates white balance mode
Value:
Value Description
PS WBmode Auto Auto
PS_WBmode_Day Light Day light
PS WBmode_ Cloudy Cloudy
PS_WBmode_Tungsten Tungsten
PS_WBmode_Fluorescent Fluorescent
PS WBmode Fluorescent H Fluorescent H
PS WBmode Custom Custom value
Note:
4.3.1 PSProp_Av
Description:
Indicates aperture value for manual and aperture priority shooting modes.
Available values depends on camera model and current Zoom value
Value:
Value Description
PS_Av 3 4 (34) 3.4
PS_Av 4 0 (40) 4.0
PS Av 4 5 (45) 4.5
PS_Av 5 0 (50) 5.0
PS_Av 5 6 (56) 5.6
PS_Av 6 3 (63) 6.3
PS Av 7 1 (71) 7.1
PS_Av 8 0 (80) 8.0
Note:
Values in brackets represent actual integer values.
4.3.1 PSProp_Tv
Description:
Indicates shutter speed for manual and shutter speed priority camera modes
Value:
Value Description
PS_Tv_15sec (150000) 15"
PS_Tv_13sec (130000) 13"
PS_Tv_10sec (100000) 10"
PS_Tv_8sec (80000) 8"
PS_Tv_6sec (60000) 6"
PS_Tv_5sec (50000) 5"
PS_Tv_3sec2 (32000) 3"2
PS_Tv_2sec5 (25000) 2"5
PS_Tv_2sec (20000) 2"
PS_Tv_1sec6 (16000) 1"6

p. 36/ 54

Note:

Description:

Target Object:

Value:

Note:

PS Tv_1sec3 (13000) 1"3
PS_Tv_1sec (10000) 1"

PS Tv 0sec8 (8000) 0"8
PS_Tv_0sec6 (6000) 0"6

PS Tv 0sec5 (5000) 0"5

PS Tv _0Osec4 (4000) 0"4

PS Tv 0sec3 (3000) 0"3

PS Tv 4 (2500) Ya
PS_Tv 5 (2000) 1/5

PS Tv 6 (1666) 1/6

PS Tv 8 (1250) 1/8

PS Tv 10 (1000) 1/10
PS Tv 13 (769) 1/13
PS Tv 15 (666) 1/15
PS Tv 20 (500) 1/20
PS_Tv 25 (400) 1/25
PS Tv 30 (333) 1/30
PS_Tv 40 (250) 1/40
PS Tv 50 (200) 1/50
PS Tv 60 (166) 1/60
PS Tv 80 (125) 1/80
PS Tv 100 (100) 1/100
PS_Tv 125 (80) 1/125
PS Tv 160 (62) 1/160
PS_Tv 200 (50) 1/200
PS Tv 250 (40)) 1/250
PS Tv 320 (31) 1/320
PS_Tv 400 (25) 1/400
PS Tv 500 (20) 1/500
PS Tv 640 (15 1/640
PS Tv 800 (12 1/800
PS_Tv 1000 (10 1/1000
PS Tv 1250 (8) 1/1250
PS Tv 1600 (6) 1/1600
PS_Tv 2000 (5) 1/2000
PS Tv 2500 (4) 1/2500

Values in brackets represent actual integer values.

4.3.1 PSProp_RedEyeMode

Indicates the state of Red-eye reducing mode of the flash

Value Description
PS RedEyeMode On On
PS_RedEyeMode_ Off Off

p. 37/ 54

4.3.1 PSProp_ExposureComp

Description:
Indicates exposure compensation value
Value:
Value Description
PS_ExposureComp_minus_2 (0) -2
PS_ExposureComp_minus_1 66 (34) -1.66
PS_ExposureComp_minus_1 33 (67) -1.33
PS_ExposureComp_minus_1 (100) -1
PS_ExposureComp_minus_0 66 (134) | -0.66
PS_ExposureComp_minus_0 33 (167) | -0.33
PS_ExposureComp_0 (200) 0
PS ExposureComp plus 0 33 (233) +0.33
PS_ExposureComp_plus 0 66 (266) +0.66
PS_ExposureComp_plus_1 (300) +1
PS_ExposureComp _plus 1 33 (333) +1.33
PS_ExposureComp_plus_1 66 (366) +1.66
PS_ExposureComp_plus 2 (400) +2
Note:

Values in brackets represent actual integer values.

4.3.1 PSProp_FlashComp

Description:
Indicates flash compensation
Value:
Value Description
PS_FlashComp_minus_2 (0) -2
PS_FlashComp_minus 1 66 (34) -1.66
PS_FlashComp_minus 1 33 (67) -1.33
PS_FlashComp_minus_1 (100) -1
PS FlashComp _minus 0 66 (134) -0.66
PS_FlashComp_minus_0 33 (167) -0.33
PS_FlashComp 0 (200) 0
PS_FlashComp_plus_0 33 (233) +0.33
PS_FlashComp_plus_0 66 (266) +0.66
PS FlashComp plus_1 (300) +1
PS_FlashComp_plus_1 33 (333) +1.33
PS FlashComp plus 1 66 (366) +1.66
PS_FlashComp_plus_2 (400) +2
Note:

Values in brackets represent actual integer values.

4.3.1 PSProp_MeteringMode

Description:
Indicates exposure metering mode
Value:
Value Description
PS_MeteringMode_Evaluative Evaluative

p. 38/ 54

Note:

Description:

Value:

Note:

Description:

Value:

Note:

Description:

Value:

Note:

PS_MeteringMode_Spot

Spot

PS_MeteringMode_Center

Center

431

Indicates focusing mode

PSProp_FocusingZone

Value Description
PS_FocusingZone_Auto Auto
PS_FocusingZone Normal Normal
PS_FocusingZone_Macro Macro
PS_FocusingZone_Super_Macro Super Macro
PS_FocusingZone_Infinity Infinity
43.1 PSProp_FlashMode

Indicates flash mode
Value Description
PS FlashMode Auto Auto
PS FlashMode On On
PS_FlashMode Off Off

43.1

PSProp_BatteryLevel

Read-only property indicating current battery level

Value Description
PS_BatteryLevel 1 1
PS BatterylLevel 2 2
PS BatterylLevel 3 3
PS_BatterylLevel 4 4

PS_BatteryLevel DC

DC — camera is connected to direct
current source

4.4. Data Types Used by the APIs

Data types defined under PS-SDK are listed in pssdk.h and psproperty.h in C language format.
This section introduces data types unique to PS-SDK that are used by PS-SDK APIs.

For the most recent type definitions, see the header files.

p. 39/ 54

44.1 PSProp_ValExtendedInfo
Additional information for property value.

For PSProp_ImageSize property values extended info contains structure ImageSize with width
and height

4.4.2 PSProp_Desc
Property description:

e int* availableValues — list of values available for the property at the moment (in the exact
order of values for the property as in property description);

e PSProp_ValExtendedInfo* extendedValuelnfo — list of additional information for
property values in the same order as in availableValues. If there is no additional
information for value properties, extendedValuelnfo is a nullptr;

e Int availableValuesLength — length of availableValues list (and of extendedValuelnfo
list if it is defined);

e IntisReadOnly — read-only marker. PS_TRUE for read-only properties and PS_FALSE
for read-write ones.

4.4.3 PSCameralnfo
Camera information:

e Camerald id unique camera identifier;
e wchar_t name[PS_MAX_NAME_LEN] — camera model name (PS_MAX_NAME_LEN
— 128 chars);

e wechar_t systemld[PS_MAX_SYSTEMID_LEN] - camera system id
(PS_MAX_SYSTEMID_LEN - 256 chars)
e wchar_t psmVersion[PS_MAX_PSMVER_LEN] - version of camera PSM-firmware

444 PSFilelnfo

File information:
e Fileld id unique file id

e char name[PS_MAX_FILE_NAME_LEN] filename (MAX_FILE_NAME_LEN - 128
chars)

e int size filesize in bytes;

445 PSCameraConnectionState
Camera connection state

e PS CS CONNECTED camera connected
e PS CS _DISCONNECTED camera disconnected

4.4.6 PSPreviewState

Possible image preview states:
e PS PREVIEW _DISABLED preview disabled,
e PS PREVIEW_ENABLED preview enabled

p. 40/ 54

4.4.7 PSBool

PS-SDK Boolean values representations
o PS_FALSE - False,
. PS_TRUE - True

5. Code samples

This sample code is written in C++. All samples represented in the document are fragments of the example file
SampleDlg.cpp included in SDK distribution.

5.1. |Initialization of the SDK and CameraManager

// CSampleDlg msessage handlers
BOOL CSampleDlg::0OnInitDialog ()
{

CDhialog::0OnInitDialog() ;

// Get file save path
m_strSavePath = GetPath ();

PSResult psErr = PS OK;
psErr = PSInitializeSDK();
if (psErr != PS OK)

{

goto camerr;

e
// Connection of camera device
/) mm
m_CamManager = PSGetCameraManager ();

if (m_CamManager == 0)

{

MessageBox (_T("PSGetCameraManager failed"));
}
/)= mmm
// A picture buffer is created
e

m pPreviewWnd = &m PreviewLocation;
if (!CreateDIBBuffer ())
{
MessageBox ("Error creating the picture buffer");
EndDialog(0);
return FALSE;
}
return TRUE; // return TRUE unless you set the focus to a control
camerr:
CString strErr;
if (psErr != PS OK)
{
strErr.Format (T ("ErrorCode = 0x%08X"), psErr);

strErr = T("Unknown error");

}

MessageBox (strErr);
p. 41/ 54

EndDialog (1);
return FALSE;
}

5.2. SDK termination

void CSampleDlg::CleanUp ()
{

if (m_hReleaseEvent != 0)

{

PSFree (m_hReleaseEvent) ;

m_hReleaseEvent = 0;

if (m_hDownloadEvent != 0)

PSFree (m_hDownloadEvent) ;

m_hDownloadEvent = 0;

if (m_hPreviewFrameEvent != 0)

PSFree (m_hPreviewFrameEvent);
m_hPreviewFrameEvent = 0;

if (m_hZoomEvent != 0)

PSFree (m_hZoomEvent) ;

m_hZoomEvent = 0;

if (m_Session != 0)

PSFree (m_Session);

m Session = 0;
}
FreeDIBBuffer ();
[/
// End processing of PS-SDK is performed
[/
PSTerminateSDK () ;

5.3. Camera connection

void CSampleDlg: :0OnConnect ()
{

if (m_CamManager == 0)

{
m bConnected = FALSE;
UpdateData (FALSE);

return;

}

if (m_hReleaseEvent != 0)

{

PSFree (m hReleaseEvent);

m _hReleaseEvent = 0;

p. 42/ 54

if (m_hDownloadEvent != 0)
PSFree (m_hDownloadEvent) ;
m_hDownloadEvent = 0;

if (m_hPreviewFrameEvent != 0)
PSFree (m_hPreviewFrameEvent);
m_hPreviewFrameEvent = 0;

if (m_hZoomEvent != 0)
PSFree (m_hZoomEvent) ;
m_hZoomEvent = 0;

if (m_Session != 0)

PSFree (m_Session);

m Session = 0;
}
[/ mmmmmm oo
// Get camera list
/) =mmmmm oo
int nCount = 0;

PSCameraInfo* pCamList = 0;
PSGetCameralList (m_CamManager, &pCamList, &nCount);

if (nCount == 0)
{

AddInformationMessage (T ("No camera devices available"));

m_bConnected = FALSE;
UpdateData (FALSE) ;

return;

}

if (pCamList == 0)
{
MessageBox (T ("PSGetCameralist failed: empty outCameralList"));

m_bConnected = FALSE;
UpdateData (FALSE);

return;
}
[/ = e
// Get selected camera
[/ = e
int index = 0;

PSCameraInfo camInfo;
memcpy (&camInfo, (pCamList + sizeof (PSCameralInfo) * index),
sizeof (PSCameralnfo));

CString strModelName;
CString strSystemId;

#ifdef UNICODE
strModelName = camInfo.name;

p. 43/ 54

strSystemId = camInfo.systemId;
#else
char pMBStringName[PS MAX NAME LEN * 2];
memset (pMBStringName, 0, sizeof (pMBStringName)) ;
: :WideCharToMultiByte (CP_ACP, 0, camInfo.name, -1, pMBStringName,

sizeof (pMBStringName) - 1, 0, 0);

strModelName = (const char *)pMBStringName;

char pMBStringSystemId[PS MAX SYSTEMID LEN * 2];
memset (pMBStringSystemId, 0, sizeof (pMBStringSystemId)):;
::WideCharToMultiByte (CP_ACP, 0, camInfo.systemId, -1,

pMBStringSystemId, sizeof (pMBStringSystemId) - 1, 0, 0);
strSystemId = (const char *)pMBStringSystemId;
fendif
// {
// CString strMsg;
// strMsg.Format (T ("Camera selected:\r\nid: %d\r\nname:
// $s\r\nsystemId: %s"),
// (int)camInfo.id, strModelName, strSystemId);
// AddInformationMessage (strMsg);
// }
ASSERT (pCamList->id == camInfo.id);
=
// Open session of camera remote control
= m
PSResult psErr = PSOpenSession (m_CamManager, camInfo.id, &m Session);
if (psErr != PS OK)

{

}

if
{

CString strErr;
strErr.Format (T ("PSOpenSession failed: ErrorCode = 0x%08X"),

psErr) ;
MessageBox (strErr);

m_bConnected = FALSE;
UpdateData (FALSE) ;

return;

(m_Session == 0)

CString strErr;
strErr.Format (T ("PSOpenSession failed: Wrong session handle.

ErrorCode = 0x%08X"), psErr);
MessageBox (strErr);

m_bConnected = FALSE;
UpdateData (FALSE);

return;

CString strMsg;
strMsg.Format (T ("New camera connected:\r\nid: %d\r\nname:
$s\r\nsystemId: %s"),
(int)camInfo.id, strModelName, strSystemld);
AddInformationMessage (strMsg);

p. 44/ 54

s_ShootCompletedParam.session = m_Session;
s_ShootCompletedParam.strSavePath = m strSavePath;
s_ShootCompletedParam.hwndDlg = GetSafeHwnd ()

m_hReleaseEvent = PSShootCompletedSubscribe (m Session,
(PSShootCompletedCallback) pfnShootCompletedCallback,
(void*) &s_ShootCompletedParam) ;

if (!m hReleaseEvent)

{
MessageBox (_T("PSShootingCompletedSubscribe failed"));

PSFree (m_Session);
m Session = 0;

m_bConnected = FALSE;
UpdateData (FALSE);

return;

s _DownloadCompletedParam.hwndDlg = GetSafeHwnd ();

m_hDownloadEvent = PSDownloadCompletedSubscribe (m_ Session,
(PSDownloadCompletedCallback) pfnDownloadCompletedCallback,
(void*) &s_ DownloadCompletedParam) ;

if (!m_hDownloadEvent)

{
MessageBox (_T("PSDownloadCompletedSubscribe failed"));

PSFree (m_Session);
m Session = 0;

m_bConnected = FALSE;
UpdateData (FALSE) ;

return;
}
[/====mmm
// Set up properties
e N
UpdateProperty (PS ImageSize, m cbImageSize);
UpdateProperty (PS JpegQuality, m_cbImageQuality);
UpdateProperty (PS WBmode, m_cbWhiteBalance);
UpdateProperty (PS FlashMode, m cbFlashMode) ;
UpdateProperty (PS RedEyeMode, m_cbRedEye) ;
UpdateProperty (PS FlashComp, m cbFlashComp) ;
UpdateProperty (PS ISOSpeed, m_cbISOSpeed) ;
UpdateProperty (PS Av, m_cbAV) ;
UpdateProperty (PS Tv, m_cbTV) ;
UpdateProperty (PS ExposureComp, m cbExposureComp) ;
UpdateProperty (PS AFMode, m_cbAFMode) ;
UpdateProperty (PS FocusingZone, m_ cbFocusingZone) ;
UpdateProperty (PS MeteringMode, m cbMeteringMode) ;
UpdateProperty (PS ShootingMode, m cbShootingMode) ;
UpdateProperty (PS BatteryLevel, m cbBatteryLevel);
J/=mmmmmmmmmm oo
// Set up zoom slider
e
UpdateZoom () ;

p. 45/ 54

m_hZoomEvent
(PSGenericEventCallback) pfnZoomCompletedCallback,

if
{

}

(void*)

= PSZoomCompletedSubscribe (m_ Session,

GetSafeHwnd ());

(!m hZoomEvent)

MessageBox (_T("PSZoomCompletedSubscribe failed"));

PSFree

(m_Session);

m Session = 0;

m_bConnected = FALSE;
UpdateData (FALSE);

return;

m_bConnected = TRUE;

UpdateData

(FALSE) ;

m btnPreview.SetFocus ();

}

void CSampleDlg: :OnAEAF ()

{

if (m_Session == 0)
{

return;
}
/) mmm e e e
// Autoexposure and autofocus update
/) mmm e e e

PSResult psErr = PSUpdateAEAF (m_Session);

if
{

(psErr != PS_OK)

CString strErr;
strErr.Format (T ("PSUpdateAEAF failed: ErrorCode =

MessageBox (strErr);

5.4. Preview frames receiving switching on
void CSampleDlg: :0OnPreview ()

{

if
{

}

if
{

(m_Session == 0)

return;

(!m hPreviewFrameEvent)

s _PreviewFrameParam.hwndDlg = GetSafeHwnd ();

m hPreviewFrameEvent = PSNewPreviewFrameSubscribe
(PSGenericEventCallback) pfnNewPreviewFrameCallback,

0x%08X"), psErr);

(m_Session,

p. 46/ 54

(void*) &s_PreviewFrameParam) ;

if (!m hPreviewFrameEvent)
{

MessageBox (T ("PSNewPreviewFrameSubscribe failed"));

m bPreviewEnabled = FALSE;
UpdateData (FALSE);

return;

}

PSResult psErr = PSSetPreviewState (m _Session, PS PREVIEW ENABLED) ;

if (psErr != PS OK)
{
CString strErr;
strErr.Format (T("PSSetPreviewState failed: ErrorCode =

0x%08X"), psErr);
MessageBox (strErr);

}

m bPreviewEnabled = TRUE;
UpdateData (FALSE) ;
}

5.5. Implementation of PSGenericEventCallback function

void CSampleDlg: :pfnNewPreviewFrameCallback (void* context)
{
if (!context)
{
ASSERT (FALSE) ;
return;

}
const PREVIEW FRAME PARAM* pParam = (PREVIEW FRAME PARAM*)context;

if (pParam->hwndDlg == NULL)
{

ASSERT (FALSE) ;

return;

}

::SendMessage (pParam->hwndDlg, CAMERAEVENT GETFRAME MESSAGE, 0, 0);
}

5.6. Receiving preview frame from a camera

LRESULT CSampleDlg: :0OnGetPreviewFrame (WPARAM, LPARAM)
{
ASSERT VALID (this) ;

void* pBMPData = NULL;
int nDataSize = 0;
PSResult psErr = PSGetPreviewFrame (m Session, &pBMPData, &nDataSize);

if (psErr != PS OK)
{

OnPreviewClose ();

CString strErr;
strErr.Format (T("PSGetPreviewFrame failed: ErrorCode = 0x%08X"),

p. 47/ 54

psErr);
MessageBox (strErr);

return 1;

}

if (!pBMPData || nDataSize <= 0)

{
ASSERT (FALSE) ;

OnPreviewClose () ;
return 1;
}
[/ mmmm
// Load bitmap information
[/ mmmmmm
PBITMAPFILEHEADER pBmpFileheader = (PBITMAPFILEHEADER)pBMPData;
PBITMAPINFOHEADER pBmpInfoheader = (PBITMAPINFOHEADER) ((LPBYTE)pBMPData +
sizeof (RITMAPFILEHEADER)) ;
LPBYTE bpPixel = (LPBYTE)pBMPData +

pBmpFileheader->bfOffBits;

ASSERT (pBmpInfoheader->biWidth == PREVIEW WIDTH) ;
ASSERT (pBmpInfoheader->biHeight == PREVIEW HEIGHT) ;
ASSERT (pBmpInfoheader->biPlanes == 1);

ASSERT (pBmpInfoheader->biBitCount == 32);

ASSERT (pBmpInfoheader->biCompression == BI RGB);
ASSERT (m_PreviewSurface.vpBits != NULL);

memcpy (m_PreviewSurface.vpBits, bpPixel, pBmpInfoheader->biSizelImage);

PSFree (pBMPData);

ASSERT VALID (m_pPreviewWnd) ;

CRect rectPreview;
m_pPreviewWnd->GetWindowRect (&rectPreview) ;
BOOL bStretch = TRUE;

HDC hdcDest = ::GetDC (m pPreviewWnd->GetSafeHwnd ());
HDC hdcSrc = ::CreateCompatibleDC (hdcDest) ;
::SelectObject (hdcSrc, m PreviewSurface.hBmp) ;

if (bStretch)

{
::StretchBlt (hdcDhest,

1, 1, rectPreview.Width () - 2, rectPreview.Height () - 2,
hdcSrc,
0, 0, PREVIEW WIDTH, PREVIEW HEIGHT,
SRCCOPY) ;
}
else
{
::BitBlt (hdcDest,
0, 0, PREVIEW WIDTH, PREVIEW HEIGHT,
hdcSrc,
0, 0O,
SRCCOPY) ;

}
::DeleteDC (hdcSrc);
::ReleaseDC (m_pPreviewWnd->GetSafeHwnd (), hdcDest);

p. 48/ 54

return 0;

5.7. Update current Zoom value

void CSampleDlg: :UpdateZoom ()
{

if (m_Session == 0)

{

return;
}
[/ mmmmm e e
// Set up zoom slider
Y

int nZoomMax = 0;
PSResult psErr = PSGetMaximumZoom (m_Session, &nZoomMax);
if (psErr != PS OK)
{
CString strErr;
strErr.Format (T ("PSGetMaximumZoom failed: ErrorCode = 0x%08X"),
psErr) ;
MessageBox (strErr);

UpdateData (FALSE) ;

return;
}
int nZoomTickFrequency = (nZoomMax > 10) ? nZoomMax / 10 : 1;
int nZoomValue = 0;
psErr = PSGetZoom (m Session, &nzoomValue);
if (psErr != PS OK)

{
CString strErr;
strErr.Format (_T("PSGetZoom failed: ErrorCode = 0x%08X"), psErr);

MessageBox (strErr);

UpdateData (FALSE) ;
return;

}

m_sliderZoom.SetRangeMax (nZoomMax) ;
m sliderZoom.SetPos (nZoomValue) ;
m sliderZoom.SetTicFreg(nZoomTickFrequency) ;

UpdateData (FALSE) ;

5.8. Change Zoom value

void CSampleDlg::0nHScroll (UINT nSBCode, UINT nPos, CScrollBar* pScrollBar)

{
if (m_Session == 0)
{
CDhialog: :0nHScroll (nSBCode, nPos, pScrollBar);
return;

// Change zoom

p. 49/ 54

if (nSBCode == TB ENDTRACK)

int nZoomValue m sliderZoom.GetPos();

PSResult psErr = PSSetZoom (m_ Session, nZoomValue);

if (psErr != PS OK)
{
CString strErr;
strErr.Format (T ("PSSetZoom failed: ErrorCode = 0x%08X"),
psErr) ;
MessageBox (strErr);
}
}
CDhialog: :0nHScroll (nSBCode, nPos, pScrollBar);
}

5.9. Shutter release

void CSampleDlg: :0OnRelease ()
{

if (m_Session == 0)

{

return;
}
/)= ——————
// Release command
/)= ——————

PSResult psErr = PSShoot (m_Session);

if (psErr != PS OK)
{
CString strErr;
strErr.Format (T("PSRelease failed: ErrorCode = 0x%08X"), psErr);

MessageBox (strErr);

5.10. PSShootCompletedCallback implementation

void CSampleDlg::pfnShootCompletedCallback (void* context, PSFileInfo*
resFileId)
{

if (!context || !resFileId)
{
ASSERT (FALSE) ;
return;

}

const SHOOT COMPLETED PARAM* pParam =
(SHOOT COMPLETED PARAM*)context;

if (pParam->session == 0)
{
ASSERT (FALSE) ;
return;

}

if (pParam->hwndDlg == NULL)
{

ASSERT (FALSE) ;

return;

p. 50/ 54

CString strFileName;
#ifdef UNICODE
strFileName = resFileId->name;
#felse
char pMBStringFileName [PS MAX FILE NAME LEN * 2];
memset (pMBStringFileName, 0, sizeof (pMBStringFileName))
::WideCharToMultiByte (CP_ACP, 0, resFilelId->name, -1, pMBStringFileName,
sizeof (pMBStringFileName) - 1, 0, 0);
strFileName = (const char *)pMBStringFileName;
#endif

CString strMsg;

strMsg.Format (T ("Release completed:\r\nid: %d\r\nname: %$s\r\nsize: %d"),

(int)restleId—>id, strFileName, (int)resFilelId->size);
s_CamInfo.strMessage = strMsg;
::SendMessage (pParam->hwndDlg, CAMERAEVENT INFO MESSAGE, ::GetDlgCtrlID
(pParam->hwndDlg) , LPARAM (&s_CamInfo));

CString strFilePath;
strFilePath.Format (T("%s%s"), pParam->strSavePath, strFileName);

// CSaveDialog dlg = new COpenSaveDlg();

// dlg.FileName = fi.Name;

// dlg.Filter = "Jjpg files (*.Jjpg) |*.jpglAll files (*.*)|*.*";
// dlg.RestoreDirectory = true;

//

// if (dlg.ShowDialog () == DialogResult.OK)

const int nWFilePathLen = strFilePath.GetLength ();
wchar t* pWFilePath = new wchar t [nWFilePathLen + 1];
memset (pWFilePath, 0, sizeof (wchar t) * (nWFilePathLen + 1));

#ifdef _UNICODE
lstrcpy (pWFilePath, (LPCTSTR)strFilePath);
#else
::MultiByteToWideChar(CP_ACP, MB PRECOMPOSED, (LPCTSTR) strFilePath, -1,
pWFilePath, nWFilePathLen);
#endif

strMsg.Format (T("Try to download:\r\nId: $d\r\nFilePath: %s"),
(int) resFileId->id, strFilePath);

s _CamInfo.strMessage = strMsg;

: :SendMessage (pParam->hwndDlg, CAMERAEVENT INFO MESSAGE, ::GetDlgCtrlID
(pParam->hwndDlg), LPARAM (&s_ CamInfo));

e
// Download file
/) mmmmmm e
PSResult psErr = PSDownloadFileTo ((PSSessionHandle)pParam->session,
(PSFileld) resFileId->id, (wchar t*)pWFilePath, true);
if (psErr != PS OK)
{
CString strErr;
strErr.Format (T ("PSDownloadFileTo failed: ErrorCode = 0x%08X"),
psErr) ;
AfxMessageBox (strErr);
}
delete [] pWFilePath;

}

p. 51/54

5.11. PSDownloadCompletedCallback implementation

void CSampleDlg: :pfnDownloadCompletedCallback (void* context, PSFileId
fileId, wchar t* resPath)
{
if (!context || !resPath)
{
ASSERT (FALSE) ;
return;

}

const DOWNLOAD COMPLETED PARAM* pParam =
(DOWNLOAD COMPLETED PARAM*)context;

if (pParam->hwndDlg == NULL)
{

ASSERT (FALSE) ;

return;

}
CString strPath = (LPCWSTR) resPath;

CString strMsg;

strMsg.Format (T ("Download completed:\r\nId: %d\r\nPath: %s"),
(int) fileId, strPath);

s _CamInfo.strMessage = strMsg;

: :SendMessage (pParam->hwndDlg, CAMERAEVENT INFO MESSAGE, ::GetDlgCtrlID
(pParam->hwndDlg), LPARAM (&s_ CamInfo));

}

5.12. Check for support of given property

BOOL CSampleDlg::IsPropertySupported (const int nPropID)
{
if (m_Session == 0)
{
return FALSE;

int* pProplList = NULL;
int nProplListLen = 0;
PSResult psErr = PSGetPropertylList (m Session, &pPropList, &nPropListLen);

if (psErr != PS OK)
{
CString strErr;
strErr.Format (T ("PSGetPropertyList failed: ErrorCode = 0x%08X"),
psErr) ;
MessageBox (strErr);

}

if (!pProplist)
{
return FALSE;

}
BOOL bPropEvailable = FALSE;

for (int i = 0; i < nProplListlLen; i++)
{
if (*((int*)pProplist + i) == nProplD)
{
p. 52/ 54

bPropEvailable = TRUE;
break;

}

if (pPropList != NULL)

{
PSFree (pProplist);

}

return bPropEvailable;

}

5.13. Get property data

void CSampleDlg: :UpdateProperty (const int nPropID, CComboBoxé& cb)
{

if (m_Session == 0)
{

return;

}

if (cb.GetSafeHwnd() == NULL)

ASSERT (FALSE) ;

return;
}
e
// Enable Property if supported
/== m

if (!IsPropertySupported (nPropID))

{
cb.EnableWindow (FALSE) ;

return;
}
e
// Get available values of the Property
/) mmm e

PSProp Desc* pPropDesc = NULL;
PSResult psErr = PSGetPropertyDesc (m _Session, nProplD, &pPropDesc);

if (psErr != PS OK)

{
CString strErr;
strErr.Format (T ("PSGetPropertyDesc failed: ErrorCode = 0x%08X"),

psErr) ; B
MessageBox (strErr);

}

if (pPropDesc == NULL)

{
ASSERT (FALSE) ;

return;

}
cb.Clear ();

int 1i;
for (i = 0; i < pPropDesc->availableValuesLength; i++)
{

int* pValue = ((int*)pPropDesc->availableValues) + 1i;

char* pValueName = NULL;

p. 53/ 54

psErr = PSGetPropertyValName (nPropID, *pValue, &pValueName) ;

if (psErr != PS OK)
{

break;

}

cb.InsertString (i, CString ((LPCSTR) pValueName)) ;
cb.SetItembData (i, *pValue);
}

if (psErr != PS OK)
{
CString strErr;
strErr.Format (_T ("PSGetPropertyValName failed: ErrorCode = 0x%08X"),
psErr) ;
MessageBox (strErr);

[/ mmmmm e e
// Get Property value
[/ mmmm e
int nValue = 0;

psErr = PSGetPropertyData (m _Session, nPropID, &nValue);

if (psErr != PS OK)

{
CString strErr;
strErr.Format (T ("PSGetPropertyData failed: ErrorCode = 0x%08X"),

psErr) ; N
MessageBox (strErr);

}

for (i = 0; 1 < (int) cb.GetCount(); i++)

{
if ((int) cb.GetItemData (i) == nValue)

{
cb.SetCurSel (i);

break;

}

cb.EnableWindow (!pPropDesc->isReadOnly) ;

if (pPropDesc != NULL)

{
PSFree (pPropDesc);

}

p. 54/ 54

